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Abstract  ̶ In the present paper, single degree of freedom systems have been considered for 
studying the effects of damping on various response quantities and shock spectra for three 
different impulse excitations―rectangular, half-sine and two-legged triangular force pulses. 
The Duhamel’s integral method based upon linear force variation over time step has been 
explained in this paper, which is also the methodology to estimate the response of the systems 
in this study. Numerical solution of the problem has been carried out. Responses of ten 
systems with different time periods have been plotted for different frequency ratios. Damping 
ratios considered for shock spectra are 0, 0.02, 0.05, 0.1 and 0.2. It has been observed that, as 
the duration of the impulse load approaches time period of the system, amplitude vibration 
becomes maximum. Further, the dynamic magnification factor (DMF) in the shock spectra is 
maximum for rectangular pulse followed by half-sine wave and triangular pulse, for a given 
magnitude. Similar trend is seen for damped systems. 

Index terms – Impulse loads, Dynamic magnification factor, shock spectra 

---------------------- ♦ --------------------- 

1. INTRODUCTION 
Due to increasing number of terrorist attacks on structures of importance and accidents in 
laboratories, it is becoming increasingly important to analyse and design structures to be safer 
against blast loads. Generally, it has been accepted that single degree of freedom analysis are 
best suited for such problems. Therefore, in this paper the effect of damping on shock spectra 
has been investigated along with effect of blast load duration on a structural system with 
different time periods. The equation of motion of a damped single degree of freedom 
structure having mass m, damping coefficient c and stiffness k, subjected to a dynamic force 
F(t) is given by  
  )()()()( tFtkytyctym =++   (1) 

where, y is the displacement of the structure at time t. There are several methods available to 
solve Equation (1) depending upon the nature of the force applied on the structure. In case, 
F(t) is a simple well defined pulse like rectangular, triangular, step force or half-sine pulse, 
closed-form solutions of response can readily be derived as explained briefly in the following 
section. Analytical solutions are also possible if the force F(t) is a periodic force that can be 
expressed as a function of time, like harmonic excitations. For harmonic excitation of 
frequency ω and amplitude F0, the complete solution is obtained as a sum of the 
complimentary solution and the particular solution, as given by the following equation. 

  ( ) ( )θωωωξω −++= − tDytBtAety dd
t sinsincos)( st  (2) 
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where, D is dynamic magnification factor given by ( ) ( )2 221/ 1 2D β ξβ= − + , 
d/β ω ω=  

being the frequency ratio, and yst is the static displacement given by F0/k. The first part of 
Equation (2) is transient response, and dies out after some time due to the term te ξω− . 
Thereafter, the response primarily consists of the second part, known as steady state response. 
In some cases, the force is periodic but not harmonic such as wave loading on offshore 
structures, wind forces due to vortex shedding on tall and slender structures, etc. In such 
cases, analysis can be carried out utilizing discrete Fourier transform technique. In practice, 
the excitation consists of arbitrarily varying force for example, wind force or earthquake 
acceleration. Obtaining a closed form solution of the structural response for such forces is 
quite tedious or impossible. Analytical solution of the equation of motion for a single degree 
of freedom (SDOF) system is usually not possible if the system is non-linear [Chopra, 2001]. 
In such cases, time-stepping numerical techniques are used to solve the equation of motion 
such as central-difference technique, Newmark’s methods, Wilson-θ, etc. The selection of the 
method depends upon a number of factors such as their accuracy, convergence, stability 
properties and feasibility of computer implementation. Apart from these techniques, 
Duhamel’s method can also be used to obtain the response directly using convolution 
integral. This gives response of the system due to any impulse force F(t), as follows. 

  ττωτ
ω

dtF
m

ty
t

∫ −=
0

)(sin)(1)(  (3) 

The integral in Equation (3) is known as Duhamel’s integral. It can be evaluated to get closed 
form solutions for simple pulses whereas for arbitrarily varying loads, numerical integration 
needs to be done over a suitably chosen small time step. Size of the time step is very crucial 
for convergence of the results. In order to include the effect of initial conditions, Equation (3) 
is to be added to the free-vibration solution. Therefore, total response becomes, 
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Numerical solution considering the force to be linear during the time step has been found to 
give best solutions. The procedure to obtain the analytical solutions for some typical pulse 
forces is explained further in this text. 

2. DMF AND SHOCK SPECTRA 
Shock spectra for a given impulse is the plot of dynamic magnification factors of a number of 
SDOF systems subjected to this impulse versus frequency or time period of the SDOF 
systems. Dynamic magnification factor is obtained by dividing maximum displacement by 
static displacement, i.e., DMF= [ ] stmax

( ) /y t y . Few cases of impulse loads are presented 
below.  

2.1 Constant Step Force 
Let a force of magnitude F0 be applied to the structure suddenly and this force continues to 
act. The definition of the force is, 0)( FtF = for all 0≥t , as given in Figure 1. 
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Figure 1: Constant force. 

Using the Equation (3), and putting F(t) = F0, response at any time t is derived to be,  

  ( )tyty ωcos1)( st −=  (5) 

2.2  Rectangular pulse 
Let td be the duration of the rectangular force of magnitude F0. The definition of the pulse is 
given as   

  dttFtF ≤≤= 0for )( 0  (6) 

  dtt >= for 0  

 
Figure 2: Rectangular pulse force. 

Response of the system during the pulse is the same as for constant force given by Equation 
(6). After time td, total response will be given by Equation (4). Here, y0 and 0y  are in fact the 
displacement and velocity at the end of pulse, i.e., at time td. And, they act as initial 
conditions for second phase of vibration starting after the pulse vanishes. Equation (5) can be 
solved to get the desired response. Solution is thus given as follows. 

  
[ ]
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2.3 Half sine-wave force 
Force definition,   

  
0( ) sin for 0

0 for
2
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Figure 3: Half-sine wave pulse. 

Solving Equation (3) for first phase of vibration ( 0 dt t≤ ≤ ) and Equation (4) for second phase 

of vibration ( dt t≥ ), we get the following solutions. 
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DMFs obtained for two special cases as given below. 

Case-1: 1
2
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For double-triangular pulse, responses of SDOF system are also obtained in the similar 
manner as explained above.  

3. RESPONSE OF UNDER-DAMPED SDOF SYSTEM 
In case of viscously damped SDOF system, the solution can be evaluated by introducing the 
term ( )te ξω τ− −  in the Duhamel’s integral in Equations (3) and (4). Thus, the new equations are 
given below. 

 For forced vibration phase with zero initial conditions, 

  ( )

0

1( ) ( )sin ( )
t ty t e F t d

m
ξω τ τ ω τ τ

ω
− −= −∫  (12) 

 For free vibration phase, 
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4. NUMERICAL STUDY 
The program developed to solve response and DMF equations given above has been verified 
with a problem chosen from [2]. Table-1 gives force-definition and Table-2 shows the results 
which are found to be conforming to an acceptable level of accuracy. The responses of ten 
SDOF systems (for ten ratios td/T) are obtained by numerical simulation. These responses are 
shown in Figures 4 to 6. Further, the dynamic magnification factors are also computed for 
these cases and plotted as shock spectra in Figure 7 for no damping for equal-magnitude 
pulses. Shock spectra (DMF vs td/T) are also plotted for damped SDOF systems for different 
damping ratios, ξ = 0.02, 0.05, 0.1 and 0.2 as given in Figure 8.  

Table-1: Force definition [2] 

Time 0 0.02 0.04 0.06 

Force 0 120000 120000 0 

 Mass = 100 kg, Stiffness = 105 N/m, Damping ratio = 0.05, Maximum time = 0.12 s, 
 Time step = 0.005 s. 

  
Table-2: Results of Program [2] 

Time (s) Force Disp. Vel. Acc. Support 
Reaction 

0 0 0 0 0 0 

0.005 30000 0.001244 0.744511 296.4021 266.2577 

0.01 60000 0.009872 2.944021 580.8181 1356.947 

0.015 90000 0.032982 6.521264 846.3962 3889.816 

0.02 120000 0.077199 11.36608 1086.858 8515.612 

0.025 120000 0.14728 16.59417 1000.244 15634.93 

0.03 120000 0.242319 21.3295 890.2316 25153.09 

0.035 120000 0.359571 25.46261 759.9097 36847.58 

0.04 120000 0.495785 28.90063 612.823 50413.83 

0.045 90000 0.64605 30.82488 156.4731 65336.24 

0.05 60000 0.800234 30.47086 -296.591 80601.41 

0.055 30000 0.947033 27.88308 -735.207 95112.86 

0.06 0 1.075504 23.16063 -1148.74 107799.5 

0.065 0 1.176573 17.1984 -1230.96 117782.9 

0.07 0 1.246934 10.90402 -1281.42 124741.1 

0.075 0 1.285328 4.438476 -1299.36 128540.4 

0.08 0 1.291305 -2.0355 -1284.87 129132.1 

0.085 0 1.265226 -8.35753 -1238.8 126550.2 

0.09 0 1.20824 -14.3735 -1162.79 120909.5 

0.095 0 1.122242 -19.9394 -1059.19 112401.2 
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0.1 0 1.009815 -24.9244 -930.997 101288.6 

 

 
 

 
 

 
 

 

 
Figure 4: Response of undamped SDOF systems to rectangular pulse. 
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Figure 5: Response of undamped SDOF systems to triangular pulse. 
 
 
 

 
Figure 6: Response of undamped SDOF systems to half-sine pulse. 

 

 

 
Figure 7: Shock spectra (DMF vs td/T) for various pulses of same amplitude (ξ = 0). 
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Figure 8: Shock spectra (DMF vs td/T) for various pulses of equal amplitude for damping 

ratios 0.02, 0.05, 0.1 and 0.2. 
5. CONCLUSIONS 
The following conclusions have been drawn from the study carried out in this paper. 

(1) For a given value of amplitude of impulse load, dynamic magnification factor is the 
maximum for rectangular pulse followed by that for half-sine wave and triangular 
pulse. This can be attributed to the amount of impulse is area under force-time graph. 

(2) DMF for rectangular pulse reaches maximum value and stays there for higher time 
period systems, especially beyond twice the pulse duration. 

(3) For half-sine wave and triangular pulses, shock spectra reaches its peak for all 
damping ratios, before unity frequency ratio and decreases gradually to one.  

(4) Increase in damping reduces the DMF values for all impulse loads. Reduction seems 
proportion for change in damping. 

(5) As the duration of the impulse load approaches time period of the system, amplitude 
of vibration becomes maximum. 
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